a2 United States Patent
Wang et al.

US009183152B2

US 9,183,152 B2
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR PROVIDING
INSTANT VIDEO IN AN INFORMATION
HANDLING SYSTEM

(71) Applicant: Dell Products, LP, Round Rock, TX
(US)

(72) Inventors: Bi-Chong Wang, Austin, TX (US);
Austin P. Bolen, Austin, TX (US);
Madhusudhan Rangarajan, Portland,
OR (US)

(73) Assignee: Dell Products, LLP, Round Rock, TX
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/492,841

(22) Filed: Sep. 22, 2014
(65) Prior Publication Data
US 2015/0009225 Al Jan. 8, 2015

Related U.S. Application Data

(63) Continuation of application No. 12/941,544, filed on
Now. 8, 2010, now Pat. No. 8,847,967.

(51) Int.CL

G09G 5/36 (2006.01)
GO6F 12/08 (2006.01)
GO6F 9/44 (2006.01)
402
; START)
404
. 4

Set Up Interrupt Veciors
for Video Option-ROM
in Cache

408
[’
Assign PCI Bus Numbers
to Ali Bridges to Video
Bavice Location

408

i v
Initialize PC! Bridges

410
~ y

Allocate Memory and /O
Resources Including
Bios Data Area (BDA)

42n T
[y

T

(52) US.CL
CPC ... GO6F 12/0862 (2013.01); GOGF 9/4401
(2013.01); GO6F 9/4411 (2013.01)
(58) Field of Classification Search
CPC ..ccovvvvricnne GOGF 9/4403; GOG6F 2212/2515
USPC oo 345/530, 531, 557, 538
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,393,586 Bl 5/2002 Sloan et al.
6,636,185 Bl 10/2003 Spitzer et al.
6,704,840 B2 3/2004 Nalawadi et al.

2008/0005549 Al
2008/0244250 Al
2012/0117302 Al

1/2008 Ke
10/2008 Swanson et al.
5/2012 Wang et al.

Primary Examiner — Hau Nguyen
(74) Attorney, Agent, or Firm — Larson Newman, LL.P

(57) ABSTRACT

Before initializing a memory of an information handling sys-
tem, a method includes loading an image of a video option
ROM code for a graphics interface device to a cache associ-
ated with a processor of the information handling system, and
executing the video option ROM code to initialize the graph-
ics interface device. The method also includes executing a
memory reference code to initialize the memory, and while
executing the memory reference code, providing status infor-
mation from the graphics interface device.

20 Claims, 3 Drawing Sheets

420

Cached Region Mapped
to 0000 for Shadowed
Interrupt Vectors,
/0, and BDA

430A

Cached Region Mapped!
o CO00 for Shadowed
Video Option-ROM

4308

Cached Region Mapped
to C000 for Shadowed
Modified Video
Option-ROM

/ 4128
prd

Shatow Video
Cption ROM to
Mapped C000 Region

Shadow System BIOS Image Of
Modified Video Option ROM To
Mapped C000 Region

M m——————

y
Execute Video
Qption ROM Code

418

A
END

U.S. Patent Nov. 10, 2015 Sheet 1 of 3 US 9,183,152 B2

L T e |
| oracossor 110 Video 186 |
' Display I
I
| i '
| I
4 y I
I [vemory 130 > Chipset 120 p| Graphics 180 |
| interface I
| 135 Cption 187
£ pion 184
I ROM ROM :
I -
| e 140 Disk 150 I
Interface Controller |
! A 4 4 I
I I 162
Add-On 144 { I
I Resource I
| Metwork 150 — - 164 [- 185 |Disk 1740
| interface Emulator |
I 7y I
L I
152 172
\ 4
160 Solid 174
State Drive
FIG. 1
Frocessor
Exe?gtian 210 Cache 220
Unit
Y Y
A\ 4
Bus 230
Managerment Unil
A
202
202 v

FIG. 2

U.S. Patent

302

; START)
304
AN A 4

Set Up Cache-As-RAM
{CAR)

306
N A 4

initialize Chipset
308
~ A 4

Initialize On-Board Video
Using CAR

310
et \ 4
Perform Pre-Memory
Tesis
312
~ A

Display System
information and Errors

314
N \ 4
Configure System Memory
{Memory Reference Cods)

Mo DM or

Nov. 10, 2015

Sheet 2 of 3

Nat Configured?

Display Errors and Halt |«

Configuration
Errors?

US 9,183,152 B2

328
"

Dispiay Configuration
Errors

Shut Down
Cache-As-RAM

System Usable?

NG

324
~ A
Process Remaining
POST Tasks
326
A 4
END

FiG. 3

U.S. Patent

Nov. 10, 2015 Sheet 3 of 3 US 9,183,152 B2
404
. 420
Set Up Interrupt Veciors \\ -
for Video Option-ROM Cached Region Mapped
in Cache > to (300 for Shadowed
interrupt Vactors,
/O, and BDA
4086
= . 430A
Assign PCI Bus Numbers “
to All Bridges o Video .
T . Cachad Ragion Mapped
Pevice Location to CO00 for Shadowed

l

408
<
Initialize PCI Bridges
410 l
.

Allocate Memory and /O
Resources Including
Bios Data Area (BDA)

L____

412A
<

Vidao Option-ROM

4308
"

{Cached Region Mapped
to GO0 for Shadowed
Maodified Video
Oplion-ROM

4128
/

Shadow Video
Option ROM to
Mapped CO00 Region

Shadow System BIOS Image Of
Modified Video Option ROM To
Mapped GO0 Region

414
<

Execute Vidao
Option ROM Code

l ____________ K

FIG. 4

US 9,183,152 B2

1
SYSTEM AND METHOD FOR PROVIDING
INSTANT VIDEO IN AN INFORMATION
HANDLING SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/941,544, entitled “System and Method for
Providing Instant Video in an information Handling System,”
filed on Nov. 8, 2010, the disclosure of which is hereby
expressly incorporated by reference in its entirety.

FIELD OF THE DISCLOSURE

This disclosure relates generally to information handling
systems, and relates more particularly to providing instant
video in an information handling system.

BACKGROUND

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option is an information handling
system. An information handling system generally processes,
compiles, stores, or communicates information or data for
business, personal, or other purposes. Because technology
and information handling needs and requirements can vary
between different applications, information handling systems
can also vary regarding what information is handled, how the
information is handled, how much information is processed,
stored, or communicated, and how quickly and efficiently the
information can be processed, stored, or communicated. The
variations in information handling systems allow information
handling systems to be general or configured for a specific
user or specific use such as financial transaction processing,
airline reservations, enterprise data storage, or global com-
munications. In addition, information handling systems can
include a variety of hardware and software resources that can
be configured to process, store, and communicate informa-
tion and can include one or more computer systems, data
storage systems, and networking systems.

BRIEF DESCRIPTION OF THE DRAWINGS

It will be appreciated that for simplicity and clarity of
illustration, elements illustrated in the Figures have not nec-
essarily been drawn to scale. For example, the dimensions of
some of the elements are exaggerated relative to other ele-
ments. Embodiments incorporating teachings of the present
disclosure are illustrated and described with respect to the
drawings presented herein, in which:

FIG. 1 is a functional block diagram illustrating an exem-
plary embodiment of an information handling system accord-
ing to the present disclosure;

FIG. 2 is a functional block diagram of the processor of
FIG. 1,

FIG. 3 is a flowchart illustrating a method of bootstrapping
an information handling system to enable instant video; and

FIG. 4 is a flowchart illustrating a method for initializing a
cache-as-RAM for enabling instant video in the method of
FIG. 3.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION OF DRAWINGS

The following description in combination with the Figures
is provided to assist in understanding the teachings disclosed

20

25

40

45

50

55

60

65

2

herein. The following discussion will focus on specific imple-
mentations and embodiments of the teachings. This focus is
provided to assist in describing the teachings, and should not
be interpreted as a limitation on the scope or applicability of
the teachings. However, other teachings can be used in this
application. The teachings can also be used in other applica-
tions, and with several different types of architectures, such as
distributed computing architectures, client/server architec-
tures, or middleware server architectures and associated
resources.

FIG. 1 illustrates an embodiment of an information han-
dling system 100 in accordance with at least one embodiment
of the present disclosure. Information handling system 100
can include a set of instructions that can be executed to cause
the information handling system to perform any one or more
of'the methods or computer based functions disclosed herein.
Information handling system 100 may operate as a standalone
device or may be connected, such as by using a network, to
other information handling systems or peripheral devices.

In a networked deployment, information handling system
100 can operate in the capacity of a server or as a client user
computer in a server-client user network environment, or as a
peer computer system in a peer-to-peer (or distributed) net-
work environment. Information handling system 100 can also
be implemented as Or incorporated into various devices, such
as a personal computer (PC), a tablet PC, a set-top box (STB),
apersonal digital assistant (PDA), a mobile device, a palmtop
computer, a laptop computer, a desktop computer, a commu-
nications device, a wireless telephone, a land-line telephone,
a control system, a camera, a scanner, a facsimile machine, a
printer, a pager, a personal trusted device, a web appliance, a
network router, switch or bridge, or any other machine
capable of executing a set of instructions (sequential or oth-
erwise) that specify actions to be taken by that machine. In a
particular embodiment, information handling system 100 can
be implemented using electronic devices that provide voice,
video or data communication. Further, while a single infor-
mation handling system 100 is illustrated, the term “system”
shall also be taken to include any collection of systems or
sub-systems that individually or jointly execute a set, or mul-
tiple sets, of instructions to perform one or more computer
functions.

Information handling system 100 includes processor 110, a
chipset 120, a memory 130, an input/output interface 140, a
network interface 150, a disk controller 160, a disk emulator
170, and a graphics interface 190. Processor 110 is connected
to chipset 120. Chipset 120 supports processor 110, allowing
processor 110 to process machine-executable code. In a par-
ticular embodiment, information handling system 100
includes one or more additional processors, and chipset 120
supports the multiple processors, allowing for simultaneous
processing by each of the processors, permitting the exchange
of information between the processors and the other elements
of information handling system 100. Processor 110 can be
connected to chipset 120 via a unique channel, or via a bus
that shares information between processor 110, chipset 120,
and other elements of information handling system 100.

Memory 130 is connected to chipset 120. Memory 130 can
be connected to chipset 120 via a unique channel, or via a bus
that shares information between chipset 120, memory 130,
and other elements of information handling system 100. In
particular, a bus can share information between processor
110, chipset 120 and memory 130. In a particular embodi-
ment, processor 110 is connected to memory 130 through a
unique channel. In accordance with another aspect, an infor-
mation handling system can include a separate memory dedi-
cated to each of the processors. A non-limiting example of

US 9,183,152 B2

3

memory 130 includes static, dynamic, or non-volatile random
access memory (SRAM, DRAM, or NVRAM), another type
of memory, or any combination thereof. Memory 130
includes read-only memory (ROM) 135. A non-limiting
example of ROM 135 includes NVRAM, erasable-program-
mable ROM (EPROM), flash memory, another type of read-
only memory, or any combination thereof. ROM 135 includes
basic input/output system (BIOS) code that is executed dur-
ing a bootstrap process of information handling system 100 to
initialize the various elements of the information handling
system, and during operation to process various /O opera-
tions for the information handling system. One function of the
BIOS code is to execute a memory reference code during the
bootstrap process that initializes and tests memory 130.

1/O interface 140 is connected to chipset 120. I/O interface
140 can be connected to chipset 120 via a unique channel, or
via a bus that shares information between chipset 120, I/O
interface 140, and other elements of information handling
system 100. Other I/O interfaces can also be used in addition
to I/O interface 140 if needed or desired. I/O interface 140 is
connected to one or more add-on resources 144. Add-on
resource 144 can also include another data storage system, a
graphics interface, a network interface card (NIC), a sound/
video processing card, another suitable add-on resource or
any combination thereof.

Network interface device 150 is connected to 1/O interface
140. Network interface 150 can be connected to I/O interface
140 via a unique channel, or via a bus that shares information
between 110 interface 140, network interface 150, and other
elements of information handling system 100. Other network
interfaces can also be used in addition to network interface
150 if needed or desired. Network interface 150 can be a NIC
disposed within information handling system 100, on a main
circuit board (such as a baseboard, a motherboard, or any
combination thereof), integrated onto another component
such as chipset 120, in another suitable location, or any com-
bination thereof. Network interface 150 includes a network
channel 152 that provides an interface between information
handling system 100 and other devices that are external to
information handling system 100. In a particular embodi-
ment, network interface 150 includes additional network
channels.

Disk controller 160 is connected to chipset 110. Disk con-
troller 160 can be connected to chipset 120 via a unique
channel, or via a bus that shares information between chipset
120, disk controller 160, and other elements of information
handling system 100. Other disk controllers can also be used
in addition to disk controller 160 if needed or desired. Disk
controller 160 can include a disk interface 162. Disk control-
ler 160 can be connected to one or more disk drives via disk
interface 162. Such disk drives include a hard disk drive
(HDD) 164, an optical disk drive (ODD) 166 (such as a
Read/Write Compact Disk (R/W-CD), a Read/Write Digital
Video Disk (R/W-DVD), a Read/Write mini Digital Video
Disk (R/W mini-DVD), or another type of optical disk drive),
or any combination thereof. Additionally, disk controller 160
is connected to disk emulator 170. Disk emulator 170 permits
a solid-state drive 174 to be connected to information han-
dling system 100 via an external interface 172. The external
interface can include industry standard busses (such as USB
or IEEE 1384 (Firewire)) or proprietary busses, or any com-
bination thereof. Alternatively, solid-state drive 174 can be
disposed within information handling system 100.

Graphics interface 180 is connected to chipset 120. Graph-
ics interface 180 can be connected to chipset 120 via a unique
channel, or via a bus that shares information between chipset
120, graphics interface 180, and other elements of informa-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion handling system 100. Graphics interface 180 is con-
nected to a video display 186. Other graphics interfaces can
also be used in addition to graphics interface 180 if needed or
desired. Video display 186 can include one or more types of
video displays, such as a flat panel display or other type of
display device. In a particular embodiment, video display 186
is provided remotely from information handling system 100,
such as when information handling system is part of a server
system that is remotely managed. Graphics interface 180
includes an option ROM device 184 that includes firmware
code that is executed during the bootstrap process of infor-
mation handling system 100 to initialize graphics interface
180, and during operation to process video information for
display on video display 186.

In a particular embodiment, one or more of memory 130,
flash memory 135, HDD 164, ODD 166, solid state drive 174,
option ROM device 184, or a combination thereof provide a
computer-readable medium for storing one or more sets of
machine-executable code, or instructions, such as software.
For example, the machine-executable code can embody one
or more of the methods or logic as described herein. In a
particular embodiment, the machine-executable code are
embedded completely, or at least partially, within processor
110, memory 130, flash memory 135, HDD 164, ODD 166,
solid state drive 174, option ROM device 184, or a combina-
tion thereof and can be executed by processor 110. As such,
processor 110, memory 130, flash memory 135, HDD 164,
ODD 166, solid state drive 174, and option ROM device 184
can include computer-readable non-transitory media. Infor-
mation handling system 100 can be used to function as a
system described below, or can function to carry out one or
more of the methods described below.

FIG. 2 illustrates an embodiment of a processor 110,
including an execution unit 210, a cache 220, and a bus
management unit 230. Execution unit 210 is connected to
cache 220 and to bus management unit 230. Bus management
unit 230 includes a processor bus 202 that is connected to
chipset 120. During the bootstrap process, bus management
unit 230 fetches machine-executable code from ROM 135,
and provides the machine-executable code to execution unit
210 to execute. The machine-executable code includes sys-
tem BIOS code. In a particular embodiment, the machine-
executable code is also provided to cache 220 such that execu-
tion unit 210 gains quicker access to the code. In another
embodiment, cache 220 operates in a cache-as-RAM mode,
also called a no-eviction cache mode or a no-fill cache mode,
to provide a temporary memory space before a memory simi-
lar to memory 130 is initialized by the system BIOS. In
another embodiment, cache 220 is set to implement a particu-
lar write-back policy such that the cache operates like a
cache-as-RAM.

In a particular embodiment, the cache-as-RAM mode can
be used to provide the resources and capabilities of graphics
interface 180 instantly during the bootstrap process. Here the
instantly available resources and capabilities of graphics
interface 180 are characterized by the fact that the resources
and capabilities of graphics interface 180 are available before
memory 130 has been initialized by the memory reference
code during the bootstrap process. In this way status infor-
mation and error messages occurring during the execution of
the memory reference code can be displayed on video display
186 as the information becomes available, or as the errors
occur. Thus, for example, when memory 130 is large, as may
be the case when information handling system 100 is part of
a server system, the memory initialization code may take a
relatively long time to execute. In a particular case, the
memory initialization code can take from five to ten minutes

US 9,183,152 B2

5

or more to execute. Thus the ability to provide status infor-
mation and error messages is advantageous, as compared to
embodiments where a BIOS beep code is relied upon to
indicate success or failure of the memory initialization pro-
cess. In particular, where information handling system 100 is
part of a server system that is remotely managed, an operator
may not be present at the information handling system at the
time of boot, and so the operator may not hear a BIOS beep
code indicating that no memory was detected or other errors.

FIG. 3 shows a method of bootstrapping an information
handling system to provide instant video on the information
handling system, starting at block 302. A processor is set up in
a cache-as-RAM mode in block 304. For example, bus man-
agement unit 230 can fetch BIOS code from ROM 135 that is
executed by execution unit 210 that sets cache 220 into the
cache-as-RAM mode. A chipset is initialized in block 306.
For example, execution unit 210 can execute BIOS code to
initialize chipset 120. In particular, one or more peripheral
connect interface (PCI) bridges can be initialized to gain
access to video interface 180. An on-board video system is
initialized using the cache-as-RAM mode in block 308. Here
bus management unit 230 can fetch video option ROM code
from option ROM device 184 and load the video option ROM
code to cache 220, and execution unit 210 can execute the
video option ROM from cache 220 to initialize graphics inter-
face 180 to provide a display capability on video display 186.

Pre-memory tests of the boot process are performed in
block 310. For example, a power-on self test (POST) portion
of'the BIOS code can be fetched by bus management unit 230
for execution by execution unit 210, to initialize various ele-
ments of information handling system 100. System informa-
tion and error conditions resulting from the pre-memory tests
are displayed in block 312. Here, execution unit 210 can
execute the video option ROM code from cache 220 to pro-
vide display information to graphics interface 180 to display
the system information and error conditions on video display
186. System memory is configured using the memory refer-
ence code in block 314. Here bus management unit 230 can
fetch the memory reference code from ROM 135 for execu-
tion by execution unit 210 to configure memory 130. A deci-
sion is made, based upon the execution of the memory refer-
ence code, whether or not any dual in-line memory modules
(DIMMs) are installed in the system in decision block 316. If
not, the “NO” branch of decision block 316 is taken, and then
an error is displayed and the bootstrap process is halted in
block 318. For example, memory 130 may be unpopulated
with DIMMSs, and execution unit 210 can execute the video
option ROM code from cache 220 to provide display infor-
mation to graphics interface 180 to display the error on video
display 186, and execution can halt.

If DIMMs are installed in the system and were properly
configured, the “YES” branch of decision block 316 is taken,
and a decision is made as to whether or not there were any
configuration errors in initializing the memory in decision
block 320. If so, the “YES” branch of decision block 320 is
taken, the configuration error is displayed in block 328, and a
decision is made, based upon the character of the configura-
tion errors, as to whether or not the system is usable in
decision block 330. If not, the “NO” branch of decision block
330 is taken, and processing continues in block 318, where
bootstrap process is halted. If either there were no configura-
tion errors in initializing the memory and the “NO” branch of
decision block 320 is taken, or the system is usable and the
“YES” branch of decision block 330 is taken, then the cache-
as-RAM mode is disabled in block 324. Thus for example, in
one case, one or more of the installed DIMMs in memory 130
may have failed to be configured properly, but the configura-

20

30

40

45

50

6

tion error may not be determined to be critical to the further
operation of information handling system 100, and so cache
220 can be set such that the cache-as-RAM mode is disabled,
and can henceforth operate according to the cache protocol of
processor 110. In another case the installed DIMMs in
memory 130 may have been properly configured, and so
cache 220 can be set such that the cache-as-RAM mode is
disabled. The remainder of the bootstrap process and the
POST is performed in block 324, and the method ends in
block 326.

FIG. 4 shows a method for initializing a cache-as-RAM for
enabling instant video in the method of FIG. 3. The method
starts in block 402, and interrupt vectors are set up and loaded
into the cache in block 404. As a result, the cache region
mapped to 0000h is shadowed with the interrupt vectors
needed to execute video calls, as shown in memory map 420.
In this way, the cache includes the supporting interrupt vec-
tors for video functionality, which would normally reside in
the system memory, loaded into the cache prior to execution
of the memory initialization code. The PCI bus numbers and
bridges to the video device are enumerated in block 406, and
the enumerated buses and bridges are initialized in block 408.
In this way, a path to access the video option ROM is estab-
lished. Memory and I/O resources, including a BIOS data
area (BDA) are allocated in the cache in block 410. As a
result, the cache region mapped to 0000h is shadowed with
the 1/O resources and BDA needed to execute video calls, as
shown in memory map 420. In this way, the cache includes the
supporting [/O and BDA data structures for video function-
ality.

In a particular embodiment, the video option ROM code is
read from the video option ROM and is shadowed into the
cache in block 412A. As a result, the cache region mapped to
CO000h is shadowed with the video option ROM code, as
shown in memory map 430A. The video option ROM code is
executed in block 414 to set up the video capabilities of the
system, and the method ends in block 416. Here, the video
option ROM is executed out of the cache.

In another embodiment, illustrated by the optional block
412B, a modified copy of the video option ROM code is
pre-loaded in the system’s BIOS ROM. This modified video
option ROM code is read from the system’s BIOS ROM and
is shadowed into the cache in block 412B. As a result, the
cache region mapped to CO00h is shadowed with the modified
video option ROM code, as shown in memory map 430B. The
modified video option ROM code is executed in block 414 to
set up the video capabilities of the system, and the method
ends in block 416. Here, the modified video option ROM is
executed out of the BIOS ROM. That is, the code to be
executed is accessed not from the cache, but from the BIOS
ROM. This embodiment is particularly applicable to proces-
sors which provide a write-back mode for the cache that does
not permit code fetches from the cache, and that provide a
write-protected mode for the cache that permits code fetches,
but does not permit memory writes to the cache.

In this embodiment, a writeable memory space is provided
by setting up the cache in the write-back mode for data writes
to that are executed within the video option ROM code, while
the actual execution of the video option ROM code is per-
formed by reading the modified video option ROM directly
from the BIOS ROM. As such, the modified video option
ROM can be in many aspects a copy of the original video
option ROM code from the video option ROM. The modifi-
cations can be such that, where the original video option
ROM code performs memory writes and reads to memory
locations that are within the block of memory allocated to the
original video option ROM code, the modified video option

US 9,183,152 B2

7

ROM code should be modified such that the associated
memory writes and reads are not to the memory locations that
are within the BIOS ROM, but rather point to memory loca-
tions within the cache. As such, a method for providing the
modified video option ROM includes decompiling the origi-
nal video option ROM code, determining the op-codes that
provide for reads and for writes within the memory space
associated with the original video option ROM, determining
the locations where the reads and writes are being performed,
and substituting the memory locations in the op-codes with
the associated memory locations within the cache.

When referred to as a “device,” a “module,” or the like, the
embodiments described above can be configured as hard-
ware, software (which can include firmware), or any combi-
nation thereof. For example, a portion of an information
handling system device may be hardware such as, for
example, an integrated circuit (such as an Application Spe-
cific Integrated Circuit (ASIC), a Field Programmable Gate
Array (FPGA), a structured ASIC, or a device embedded on a
larger chip), a card (such as a Peripheral Component Interface
(PCI) card, a PCl-express card, a Personal Computer
Memory Card International Association (PCMCIA) card, or
other such expansion card), or a system (such as a mother-
board, a system-on-a-chip (SoC), or a stand-alone device).
Similarly, the device could be software, including firmware
embedded at a device, such as a Pentium class or PowerPC™
brand processor, or other such device, or software capable of
operating a relevant environment of the information handling
system. The device could also be a combination of any of the
foregoing examples of hardware or software. Note that an
information handling system can include an integrated circuit
or a board-level product having portions thereof that can also
be any combination of hardware and software.

Devices, modules, resources, or programs that are in com-
munication with one another need not be in continuous com-
munication with each other, unless expressly specified other-
wise. In addition, devices, modules, resources, or programs
thatare in communication with one another can communicate
directly or indirectly through one or more intermediaries.

Although only a few exemplary embodiments have been
described in detail above, those skilled in the art will readily
appreciate that many modifications are possible in the exem-
plary embodiments without materially departing from the
novel teachings and advantages of the embodiments of the
present disclosure. Accordingly, all such modifications are
intended to be included within the scope of the embodiments
of'the present disclosure as defined in the following claims. In
the claims, means-plus-function clauses are intended to cover
the structures described herein as performing the recited
function and not only structural equivalents, but also equiva-
lent structures.

What is claimed is:

1. A method comprising:

prior to initializing a memory of an information handling

system:

loading an image of a video option read-only memory
(ROM) code to a cache, wherein the video option
ROM is for a graphics interface device of the infor-
mation handling system and the cache is associated
with a processor of the information handling system,
and wherein the image of the video option ROM code
is loaded from a basic input/output (BIOS) ROM
device associated with the information handling sys-
tem;

executing by the processor the video option ROM code
to initialize the graphics interface, wherein executing
the video option ROM code further comprises:

10

15

20

25

30

35

40

45

50

55

60

65

8

fetching instructions of the video option ROM code
from the video option ROM device; and
executing write instructions of the BIOS ROM code
to the cache; and
executing a memory reference code to initialize the
memory.
2. The method of claim 1, further comprising loading a
basic input/output system data area to the cache prior to
initializing the memory.
3. The method of claim 1, further comprising loading a
vector table to the cache prior to initializing the memory.
4. The method of claim 1, wherein the image of the video
option ROM code is loaded to the BIOS ROM device from an
option ROM device associated with the graphics interface
device.
5. The method of claim 1, wherein further the video option
ROM code includes instructions to read from a memory loca-
tion, the memory location being within a block of the cache
that includes the image of the video option ROM code.
6. The method of claim 1, further comprising:
comparing the video option ROM code from before the
execution with the video option ROM code from after
the execution to determine a location within the video
option ROM code that is a data storage location; and

finding an instruction within the video option ROM code
that accesses the data storage location.

7. The method of claim 6, further comprising:

modifying the video option ROM code such that the

instruction accesses a different storage.

8. An information handling system, comprising:

a processor including a cache, the cache operable in a

cache-as-RAM mode;

a graphics interface including video option read only

memory (ROM) code;

a basic input/output system (BIOS) ROM device including

the video option ROM code; and

a memory;

wherein the processor is configured to:

set the cache to the cache-as-RAM mode;

store an image of the video option ROM code from the
BIOS ROM device;

execute video option ROM code to initialize the graph-
ics interface, wherein in executing the video option
ROM code, the processor operates to:
fetch the video option ROM code from the cache; and
execute write instructions of the video option ROM

code to the BIOS ROM device; and

execute a memory reference code to initialize the
memory after the graphics interface is initialized.

9. The information handling system of claim 8, wherein the
processor is further configured to:

load a basic input/output system data area to the cache prior

to initializing the memory.

10. The information handling system of claim 8, further
comprising loading a vector table to the cache prior to initial-
izing the memory.

11. The information handling system of claim 8, wherein
the image of the video option ROM code is loaded to the
BIOS ROM device from an option ROM device associated
with the graphics interface device.

12. The information handling system of claim 8, wherein
further the video option ROM code includes instructions to
read from a memory location, the memory location being
within a block of the cache that includes the image of the
video option ROM code.

13. The information handling system of claim 8, wherein
the processor is further configured to:

US 9,183,152 B2

9

compare the video option ROM code from before the
execution with the video option ROM code from after
the execution to determine a location within the video
option ROM code that is a data storage location; and
find an instruction within the video option ROM code that
accesses the data storage location.
14. The information handling system of claim 13, wherein
the processor is further configured to:
modify the video option ROM code such that the instruc-
tion accesses a different storage.
15. A non-transitory computer readable medium including
code for performing a method, the method comprising:
prior to initializing a memory of an information handling
system:
loading an image of a video option read-only memory
(ROM) code to a cache, wherein the video option
ROM is for a graphics interface device of the infor-
mation handling system and the cache is associated
with a processor of the information handling system,
and wherein the image of the video option RUM code
is loaded from a basic input/output (BIOS) ROM
device associated with the information handling sys-
tem;
executing by the processor the video option ROM code
to initialize the graphics interface, wherein executing
the video option ROM code further comprises:
fetching instructions of the video option RUM code
from the video option RUM device; and
executing write instructions of the BIOS ROM code
to the cache; and

10

15

20

25

10

executing a memory reference code to initialize the
memory.

16. The computer readable medium of claim 15, the
method further comprising:

loading a basic input/output system data area to the cache

prior to initializing the memory.

17. The computer readable medium of claim 15, the
method further comprising:

loading a vector table to the cache prior to initializing the

memory.
18. The computer readable medium of claim 15, wherein
the image of the video option ROM code is loaded to the
BIOS ROM device from an option ROM device associated
with the graphics interface device.
19. The computer readable medium of claim 15, wherein
further the video option ROM code includes instructions to
read from a memory location, the memory location being
within a block of the cache that includes the image of the
video option ROM code.
20. The computer readable medium of claim 15, the
method further comprising:
comparing the video option ROM code from before the
execution with the video option ROM code from after
the execution to determine a location within the video
option ROM code that is a data storage location;

finding an instruction within the video option ROM code
that accesses the data storage location; and

modifying the video option ROM code such that the

instruction accesses a different storage.

#* #* #* #* #*

